

WORLD CONGRESS ULTRASOUND IN MEDICAL EDUCATION

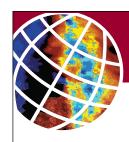
The Stethoscope of the Future

April 29–May 1, 2011 Columbia Metropolitan Convention Center Columbia, South Carolina, USA

ECHO IN THE ICU

Gabriele Via, M.D.

1st Department of Anesthesia and Intensive Care Fondazione IRCCS Policlinico San Matteo - Pavia Università degli studi di Pavia, Italy


ECHOCARDIOGRAPHY IN THE ICU

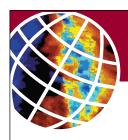
1. ICU - THE SETTING

- 2. ECHO PECULIAR FEATURES
- 3. THE PHYSICIAN ECHO APPROACH TO HEMODYNAMICS
- 4. EVIDENCE

ECHOCARDIOGRAPHY IN THE ICU

1. ICU - THE SETTING

- 2. ECHO PECULIAR FEATURES
- 3. THE PHYSICIAN ECHO APPROACH TO HEMODYNAMICS
- 4. EVIDENCE



INTENSIVE CARE

"The lady with the lamp"

"The combination in one **dedicated** area of the hospital of:

- TRAINED STAFF holistic
 approach, looking to detect,
 evaluate, integrate and develop a
 set of priorieties and objective of
 care for the patient; multidisciplinary
 team; high nurse/patient &
 physician/patient ratio
- MONITORING & THERAPEUTIC
 DEVICES full range, immediately availabile, scalable, tailored to patient needs"

Moreno RP, Singer B, Rhodes A. What is an ICU? MWV. Berlin 2010

COMPETENCE

EQUIPMENT

COMPETENCE

EQUIPMENT

PRE-HOSPITAL/ED vs ICU

Disease Onset

First approach to patient

Frequently One-disease state

Potentially limited resources

Disease Evolution, Ongoing Treatment

"Second hand" patients

Complications, Overlapping diseases

Full-range Monitoring/Diagnostic capabilities

FOCUSED + Comprehensive

(TTE/TEE, exhaustive, 2-D/Doppler, quantitative)

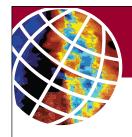
MET/RRT/CCOT

CARDIOVASCULAR FAILURE

CARDIOVASCULAR FAILURE

DEVELOPING COUNTRIES

REMOTE SETTINGS, BATTLE FIELDS, HUMANITARIAN MISSIONS


ECHOCARDIOGRAPHY IN THE ICU

1. ICU - THE SETTING

- 2. ECHO PECULIAR FEATURES
- 3. THE PHYSICIAN ECHO APPROACH TO HEMODYNAMICS
- 4. EVIDENCE

HEMODYNAMIC MONITORING in the ICU

MONITORING

"Continuous or intermittent observation of normal or altered physiological patient's parameters with an attitude to early detection of the need for therapeutic interventions"

(Bellomo R, CURR OPIN CRIT CARE 2003).

HEMODYNAMIC MONITORING in the ICU

HEMODYNAMIC MONITORING in the ICU

MONITORING

"Continuous or intermittent observation of normal or altered physiological patient's parameters with an attitude to early detection of the need for therapeutic interventions"

(Bellomo R, CURR OPIN CRIT CARE 2003).

THE IDEAL MONITORING TOOL

"Good monitoring should measure relevant variables, provide interpretable data, be easy to implement, and not cause harm. The ideal monitoring should be reliable, continuous, noninvasive, operator-independent and cost-effective, and should have a fast response time "

(Tobin M, post-graduate course on ICU monitoring. Congress of the ATS, San Diego, 20

Why Hemodynamics with an Imaging Technique (1)?

NON-/ SEMI-INVASIVE, TIME-SAVING

Why Hemodynamics with an Imaging Technique (2)?

HEMODYNAMIC CATEGORIES vs AETIOLOGY

Low CO

Elevated PAOP & CVP

High PAP

High SVR

Why Hemodynamics with an Imaging Technique (3)?

CARDIAC "FUNCTIONAL RESERVE ESTIMATION"

Why Hemodynamics with an Imaging Technique (4)?

LV DIASTOLIC DYSFUNCT

NO LV SYSTOLIC DYSEUN

LVOT OBSTRUCTION, inotropes excess

Severe IT, Intracardiac Shunts

Why Hemodynamics with an Imaging Technique (5)?

FLUID RESPONSIVENESS PARAMETER (CI increase > 15-20%)		Source	Pts N. BEST THRESHOLD VALUE		POS Predictive Value (%)	NEG Predictive Value (%)
(Michard F, 2000	40	< 9 mmHg	50	50
10	CVP	Barbier C, 2004	23	<7mmHg	67	57
		Schneider AJ, 1988; Wagner JG, 1998	18+17	None	(5 .5)	
	Wedge Pressure	Michard F, 2000	40 < 10 mmHg		41	44
		Tavernier B, 1998	35	< 10 mmHg	61	67
		Tousignant CP, 2000; Diebel L, 1992	21+29	None	1970	
Right Ventricular EDV (mod PAC)		Diebel L, 1994	32	< 90 ml/ m²	70	67
Δ CVP (spont breath)		Magder S, 1999	29	> 1 mmHg 77		81
Δ Down Δ Pulse Pressure		Tavernier B, 1998	35	> 5 mmHg	95	93
		Michard F, 2000	40	> 13%	94	96
Pass Leg Raising Δ		Monnet X, 2006	71	> 10%	94	97
· Alle	2.00	Tavernier B, 1998	35 < 9 cm/m ²		67	70
11	LV EDA	Feissel M, 2001	19	None	(*)	-
LVOT AV peak		Feissel M, 2001	19	> 12%	90	100
Δ Superior Vena Cava		Vieillard-Baron A, 2004	66	> 36%	100	91
Δ Inferior Vena Cava (Δ D _{IVC})		Feissel M, 2004	39 > 12 %		93	92
Δ Inferior Vena Cava (dIVC)		Barbier C, 2004	23 > 18%		90	90
Passive <u>Leg Raising</u> Δ CO		Maizel J, 2007	34	> 12%	100	75

ECHOCARDIOGRAPHY IN THE ICU

1. ICU - THE SETTING

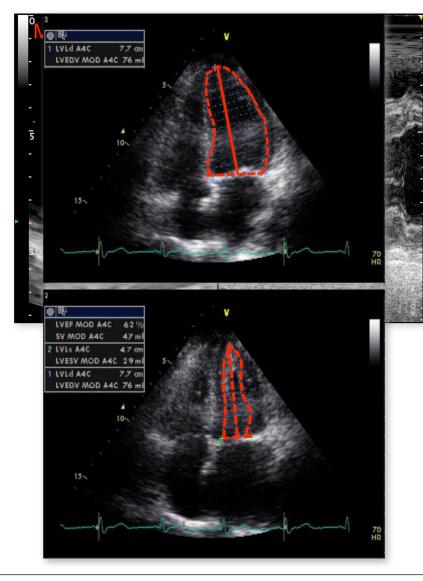
- 2. ECHO PECULIAR FEATURES
- 3. THE PHYSICIAN ECHO APPROACH TO HEMODYNAMICS
- 4. EVIDENCE

ECHO: A DEEP INSIGHT into CARDIOVASCULAR PATHOPHYSIOLOGY

- RV systolic function
- Ventricular Interdependence
- LV systolic function
- Pericardium
- LV diastolic function
- Valvular function

ECHO HEMODYNAMIC VARIABLES

- LV GLOBAL SYSTOLIC FUNCTION
- RV GLOBAL SYSTOLIC FUNCTION
- PAPs
- CO
- PRELOAD & PRELOAD RESPONSIVENESS
- LV FILLING PRESSURES
- VALVULAR DYSFUNCTION, HEART STRUCTURAL ABNORMALITIES
- LV DIASTOLIC DYSFUNCTION
- PERICARDIAL DISEASE
- AFTERLOAD


ECHO HEMODYNAMIC VARIABLES

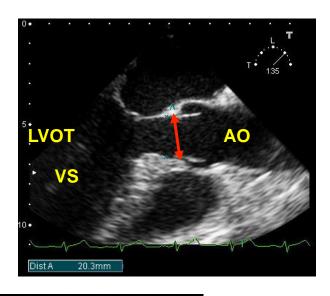
- LV GLOBAL SYSTOLIC FUNCTION
- RV GLOBAL SYSTOLIC FUNCTION
- PAPs
- CO
- PRELOAD & PRELOAD RESPONSIVENESS
- LV FILLING PRESSURES
- VALVULAR DYSFUNCTION, HEART STRUCTURAL ABNORMALITIES
- LV DIASTOLIC DYSFUNCTION
- PERICARDIAL DISEASE
- AFTERLOAD

LV Global Systolic Function

Fra Ejection Fraction ge

EF (%) = 100 x
$$\frac{(LVEDV - LVESV)}{LVEDV}$$

RV Global Systolic Function



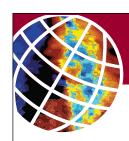
Kaul S. Am Heart J 1984

Stroke Volume (CO) estimation

LVOT VTI

LVOT Cross Sectional Area

Feinberg MS. CHEST 1995


Darmon PL. ANESTHESIOLOGY 1994

Descorps-Declere A. INT CARE MED 1996

Stroke Volume (CO) estimation

Thermodilution CO – Echo Doppler CO Agreement							
	setting	N	r	Bias (±2SD)			
<u>Darmon</u> (1994)	Intraoperative	63	0.94	0.06 ± 0.83 I/min			
Feinberg (1995)	Intraoperative, Cardiological ICU	29	0.91	0.1 ± 0.70 l/min			
Descorps-Declere (1996)	ICU	28	0.97	- 0.42 ± 1.3 l/min			
Perrino (1998)	Intraoperative	32	0.91	0.01 ± 1.12 l/min			
Royse (1999)	Intraoperative	37	0.92	0.01 ± 1.10 l/min			
Zhao (2003)	Intraoperative	30	0.87	0.07 ± 0.86 l/min			
Bettex (2004)	Intraoperative	30	0.89	0.36 ± 0.50 l/min			

Stroke Volume (CO) estimation

PAP Measurement

PAPs = grad RV - RA + CVP

 $PAPs = 4 V max^2 + CVP$

LV Filling Pressures estimation

LV Filling Pressures estimation

		19.						
W A	Doppler parameters	Threashold values	Predicted PAOP	Sensitivity	Specificity	Positive predictive value		
	E/A	> 2	> 18 mmHg	-	-	100%		
S D	Systolic fraction	< 55%	> 15 mmHg	91%	87%	2		
		< 40%	> 18 mmHg	:-	-	55%		
		= 40%	= 18 mmHg	100%	100%	100%		
		= 44%	> 18 mmHg	85%	88%	ā		
E', A'	TD _D	< 175 ms	= 18 mmHg	100%	94%	-		
	E/E'	> 15	> 15 mmHg	86%	88%	<u>=</u>		
		> 7	= 13 mmHg	86%	92%	-		
		> 7,5	= 15 mmHg	86%	81%	-		
Vp \		> 9,5	> 18 mmHg	100%	86%	ā		
100	E/Vp	> 2	= 13 mmHg	1=	-	•		
3		> 2,6	> 18 mmHg	100%	86%	2		
	Adapted from: Vignon P. RÉANIMATION 2007							

Volume Responsiveness Indices (1): LVEDA

Crystalloids 1,5 L

End Systolic LV obliteration ("Kissing Walls")
LV EDA < 5,5 cm/m² Body Surface Area

Volume Responsiveness Indices (2): H-L Interactions

FLUID RESPONSIVE

NON RESPONSIVE

Feissel M. CHEST 2001 - Vieillard-Baron A. INTENSIVE CARE MED 2004 - Barbier C. INTENSIVE CARE MED 2004

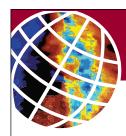
Volume Responsiveness Indices (3): PASSIVE LEG RAISING (PLR)

BASAL

PLR

Afterload (1)

HYPOVOLEMIA



VASODILATATION

Afterload (2)

" Exclusion Criteria"

Hypotension

RV DILATION - SYSTOLIC DYSFUNCTION ?

NO

LV SYSTOLIC DYSFUNCTION?
DIASTOLIC DYSFUNCTION?
VALVULAR DYSFUNCTION?

NO

LOW **PRELOAD**, PRELOAD RESPONSIVENESS?

Vasodilation!

Hemodynamic Technique: "ECHODINAMICS 3rd TEE ASSESSMENT 1st TEE ASSESSMENT 2nd TEE ASSESSMENT **TEE in place** Colloids 1500 ml Colloids 500 ml Cristalloids 1500 ml Nor 0.9 mcg/Kg/min Norepinephrine 0.9 mcg/Kg/min SAP 135/50, CVP 14, **HEMODYNAMIC** SVcO2 73%, Diuresis **INSTABILITY** 120 ml/h, No Lactates **SEPTIC SAP 110/40, CVP 13,** SHOCK **SAP 80/40, CVP 11,** SVcO2 65%, Diuresis SpO2 98%, SVcO2 58%, 50 ml/h, Lactacidemia Oliguria, Lactacidemia

ECHOCARDIOGRAPHY IN THE ICU

1. ICU - THE SETTING

- 2. ECHO PECULIAR FEATURES
- 3. THE PHYSICIAN ECHO APPROACH TO HEMODYNAMICS
- 4. EVIDENCE

ECHO IN ICU: EVIDENCE

"In God we trust. All others must bring data"

W. Dewards Deming (1900-1993)

physicist and quality improvement pioneer

ECHO in ICU: GUIDELINES?

Table 2 Cardiovascular Evaluation in an Acute Setting

Indication		Appropriateness Score (1–9)
	Hypotension or Hemodynamic Instability	
11.	Evaluation of hypotension or hemodynamic instability of uncertain or suspected cardiac etiology	A (9)
	Myocardial Ischemia/Infarction	
12.	Evaluation of acute chest pain with suspected myocardial ischemia in patients with	A (8)
	nondiagnostic laboratory markers and ECG and in whom a resting echocardiogram can be performed during pain	
13.	Evaluation of suspected complication of myocardial ischemia/infarction, including but not limited to acute MR, hypoxemia, abnormal chest X-ray, VSD, free-wall rupture/tamponade,	A (9)
	shock, right ventricular involvement, heart failure, or thrombus	
	Respiratory Failure	
14.	Evaluation of respiratory failure with suspected cardiac etiology	A (8)
	Pulmonary Embolism	
15.	Initial evaluation of patient with suspected pulmonary embolism in order to establish diagnosis	I (3)
16.	Evaluation of patient with known or suspected acute pulmonary embolism to guide therapy (i.e., thrombectomy and thrombolytics)	A (8)

ACC/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 Appropriateness Criteria for Transthoracic and Transesophageal Echocardiography

A Report of the ACC Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, ASE, ACEP, ASNC, SCAI, SCCT, and the SCMR. *Endorsed by the ACCP and the SCCM*

ECHO in ICU: GROWING INTEREST

Search in PubMed for published manuscripts in peer-reviewed journals related to the use of echocardiography in ICU settings during four consecutive periods.

ECHO in ICU: GROWING SUPPORT

- ICU echocardiography should we use it in a heartbeat? Chest 2002
- Portable echocardiography is essential for the management of acutely ill patients. BMJ 2006
- Overview of Transesophageal Echocardiography for the Chest Physician. Chest 2003
- Echocardiography for the intensivist. Care of the Critically ill
 2003
- Bedside Ultrasonography in the ICU. Chest 2005
- Echo in ICU time for widespread use! Intensive Care Medicine 2006

PREVALENCE of CARDIAC PATHOLOGY in ICU

ICU Prevalence of Occult Cardiac Abnormalities

TTE, N = 500, over 12 months period

Overall: 35% (169 pts) 1 or more

Unsuspected in: 77.0% (130 on 169 pts)

No increased Mortality in Cardiac Abnormality pts

Increased ICU and Hospital length of Stay

Bossone E. Range and Prevalence of Cardiac Abnormalities in Patients Hospitalized in a Medical ICU. CHEST 2002.

PREVALENCE of CARDIAC PATHOLOGY in ICU

ICU Prevalence of Occult Cardiac Abnormalities

TTE, N = 500, over 12 months period

Overall: 35% (169 pts) 1 or more

Unsuspected in: 77.0% (130 on 169 pts)

No increased Mortality in Cardiac Abnormality pts

Increased ICU and Hospital length of Stay

Bossone E. Range and Prevalence of Cardiac Abnormalities in Patients Hospitalized in a Medical ICU. CHEST 2002.

ECHO THERAPEUTICAL IMPACT: ICU vs Others

Prospective, structured Interview

Assessment of diagnostic and therapeutic implications of ECHO perceived by physicians and subsequently confirmed by blinded chart review

TTE, N = 542, over 5 months period

Treatement Changes, ICU vs Non ICU pts: 54% vs 37%

Tam J. What is the Real Clinical Utility of Echocardiography? A Prospective Observational Study. JASE 1999

ECHO IMPACT in ICU

TEE IMPACT IN ICU 20 studies, N = 2508

weighted means: 67.2% diagnostic

36.0% medical therapeutic

14.1% surgical therapeutic

Huettemann E. The Use and Safety of TEE in the general ICU: a mini-Review.

ACTA ANAESTH SCAND 2004.

48.5% NEW DIAGNOSIS with TEE in PAC pts

Harris KM. ECHOCARDIOGRAPHY 1999.

44% THERAPY CHANGES after TEE in PAC pts

Polaert Jl. CHEST 1995.

ECHO IMPACT in ICU

Prospective audit of all echocardiograms, (TTE & TEE) performed in a general ICU

N = 258 (TTE 72.4%, TEE 27.6 %), over 2 years

"Management was changed directly as a result of information provided in 51.2% of studies.

Changes included fluid administration, inotrope or other drug therapy, and treatment limitation"

Orme RM. Impact of echocardiography on patient management in the intensive care unit: an audit of district general hospital practice. BJA 2009

ECHO vs. other Monitoring Tools

	ECHO	PAC	PiCCO
Based on	Images/Flows (ultrasound)	Pressures, Flows (thermodilution)	Pressures, Flows (transpulmonary thermodilution)
Type of monitoring	Intermittent	Continuous	Continuous
Monitoring onset	Rapid	More delayed	More delayed
Invasiveness	None (TTE), minimal (TEE)	Yes (catheter into PA)	Yes (modified CVC, large bore peripheral artery)
CO/CI measurement	Less accurate (more reliable in detecting changes)	Clinical gold standard	Accurate
Systolic function	Clinical gold standard, separate assessment of LV and RV	Global pump function (CO, SV), RVEF*	Global pump function (GEF)
Preload	Measured Volumes/Dimensions (LVEDA, LVEDV, IVC D)	Pressures (PAOP, CVP) Calculated Volumes (CEDV*)	Calculated Volumes (GEDV)
Preload responsiveness	Accurate in MV-SR patients (ΔVpeak, ΔVTI, ΔSVC, ΔIVC). High specificity, lower sensitivity in SR/NSR patients (PLR induced LVOT VTI increase)	Limited (top/bottom of values range of PAOP, CVP). ΔPP in MV/SR patients accurate. Inaccurate in SV/NSR patients (only fair correlation with PLR induced PP increase)	Accurate (ΔPP, ΔSV) in MV/SR patients. Inaccurate in SV/NSR patients (no data yet on PLR induced SV increase)
Diastolic function	Clinical Gold Standard	No	No
Systemic vascular resistances	Just clues	Calculated from CO, MAP and CVP	Calculated from CO, MAP and CVP
Adequacy of perfusion	No [§]	SVO2	SVcO2
Valves, Pericardium, Structural abnormalities	Gold Standard	No	No
Training	Longer	Short	Short
Reproducibility of measurements	Operator dependent	Less operator dependent	Less operator dependent

HEMODYNAMIC MONITORING in the ICU

MONITORING

"Continuous or intermittent observation of normal or altered physiological patient's parameters with an attitude to early detection of the need for therapeutic interventions"

(Bellomo R. CURR OPIN CRIT CARE 2003).

THE IDEAL MONITORING TOOL

"Good monitoring should measure relevant variables, provide interpretable data, be easy to implement, and not cause harm. The ideal monitoring should be reliable, continuous, noninvasive, operator-independent and cost-effective, and should have a fast response time "

(Tobin M, post-graduate course on ICU monitoring. Congress of the ATS, San Diego, 200

An "Echocentric" view of Hemodynamics

Advanced PAC

PAC

PiCCOplus ®

MOSTCARE®

Vigileo®

LiDCO®

4 Good reasons NOT to use Echo - Monitoring

- 1. Need for Continuous CO monitoring
- 2. Need for Continuous PAP monitoring
- 3. Need for precise PAOP or SVR measurment
- 4. INABILITY TO USE IT (lack of training)

ECHO COMPETENCE in ICU

Level 3

specialist echo
examinations, echo for
invasive procedures, and
majority of post in echo
and echo research

Level 2

accept referrals from Level I,
perform comprehensive TTE & TEE,
diagnose all cardiovascular abnormalities,
optimise onward referral, teaching and research

Level 1

acquire all standard views (TTE, TEE), recognise abnormal vs normal, diagnose common abnormalities, recognise when referral indicated, understand echo vs other techniques

Emergency Echo (FEEL, FATE)

acquire standard TTE views in ALS compliant manner, recognise major causes of arrest/shock, recognise when referral for second opinion indicated,

Price S, Via G, Sloth E, et al. Echocardiography Practice, Training and Accreditation in the Intensive Care: document for the World Interactive Network Focused on Critical UltraSound (WINFOCUS). CARDIOVASC ULTRASOUND 2008

TAKE HOME MESSAGES

ECHO IN THE ICU

- May be more complex than prehosp/ED
- Can fully dysplay its monitoring/diagnostic capabilities
- With other monitoring tools / In isolation (scarce resources)
- Hemodynamic Approach
- May require longer training than Focused
- Should be done!

INTENSIVE CARE

"The lady with the lamp"

INTENSIVE CARE

"The men (& women) with a probe"

WORLD CONGRESS ULTRASOUND IN MEDICAL EDUCATION

The Stethoscope of the Future

April 29–May 1, 2011 Columbia Metropolitan Convention Center Columbia, South Carolina, USA

ECHO IN THE ICU

Gabriele Via, M.D.

1st Department of Anesthesia and Intensive Care Fondazione IRCCS Policlinico San Matteo - Pavia Università degli studi di Pavia, Italy

