Hand-Carried Ultrasound in the Hands of Hospitalists: Does It Add to the Accuracy of the Cardiac Physical Examination?

L. David Martin, M.D.
Assistant Professor of Medicine
Johns Hopkins University School of Medicine
Johns Hopkins Bayview Medical Center

Disclosures

■ None.

Acknowledgement

- SonoSite, Inc. provided machines for the study
- Funded by the Center for Innovative Medicine at JHUSOM
- David Hellmann, MD, Roy Ziegelstein, MD, Eric Howell, MD, Glenn Hirsch, MD, Carol Martire, RDCS

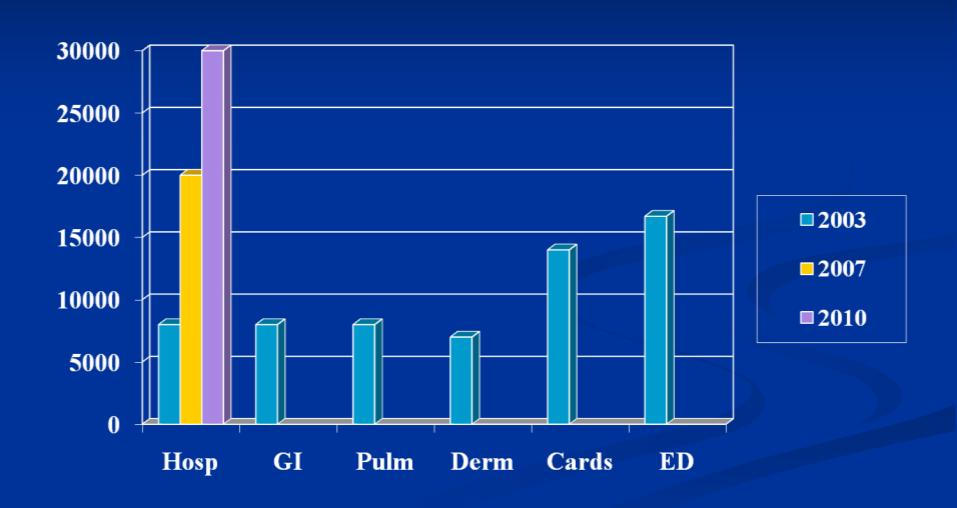
Martin LD, Howell EE, Ziegelstein RC, et al. Hand-carried ultrasound performed by hospitalists: does it improve the cardiac physical examination? Am J Med. 2009;122:35-41.

Background: Cardiac Physical Examination (PE)

- Poorly performed and inherently limited
 - Residents identified only 20% of 12 important and commonly encountered cardiac events¹
 - Cardiologists diagnosed only 45% of left ventricular dysfunction and 50% of significant valvular lesions²

Background: HCU and PE

- Ultrasound is gold standard for demonstrating cardiac anatomy and function
- First year medical students using HCU were superior to cardiologists performing PE²
 - Identified 86% of left ventricular dysfunction and 89% of significant valvular lesions (vs. 45% and 50%, respectively)


Background: HCU and PE

- HCU improves accuracy of cardiac PE
 - Medical students³
 - Medical residents^{4,5}
 - Cardiologists⁶ rate of missing important cardiac abnormalities dropped from 43% to 21%
- No studies of general internists

Selecting Hospitalists for Training

- HCU has many inpatient applications
 - Cardiac exam
 - Assess volume status
 - Abdominal exam
 - Procedures
- Young field & accustomed to technology
 - Average age of Hospitalist: 35
- There are 30,000 of them!

Number of Docs by Specialty

Methods

- Subjects:
 - JHBMC hospitalists (n=10)
 - Patients on medical ward who had conventional echocardiogram as part of clinical care (n=354)
- 4-Step HCU training program
- Hospitalist training and patient recruitment by research echo tech

Methods

- Hospitalists performed cardiac PE prior to HCU on study patients
- By PE and then HCU, hospitalists evaluated
 - Heart (LV) size
 - LV function
 - pericardial effusion
 - aortic stenosis
 - aortic regurgitation
 - mitral regurgitation

Methods

- 4 point scale to grade cardiac findings
- Gold standard: expert cardiologist made same 6
 assessments based on conventional echo
- Outcome measure: how frequently hospitalists' cardiac PE with or without HCU matched or came within one scale level of the gold standard
 - McNemar's test for paired proportions

Results

- 10 hospitalists
 - Average 2.9 years post-residency (range: 0-9)
 - 3 with limited prior echo experience
 - Completed 354 HCUs (mean=35.4, range 28-50)
 - Averaged 13 minutes to perform HCU
- 354 general medical inpatients
 - Mean age 63 yrs (SD 18.7); weight 75.5 kg (SD 14.0)
 - 53% were female

Left Ventricular Function

Cases		% P	LCL UC	L N	%	Р	LCL	UCL	N			
		Ex	Exact Match				Close Match					
All	HCU	59 .005	54 64	336	88	.0001	84	91	336			
	PE	46	41 51	336	67		62	72	336			
Normal	HCU	73 .01	67 79	219	89	.005	85	94	219			
	PE	64	58 70	219	77		71	82	219			
Abnormal	HCU	32 .000) <mark>1 24 41</mark>	117	85	.0001	78	91	117			
	PE	12	6 18	117	49		40	58	117			

Comparison of Proportions for Positive and Negative Results

Left Ventricular Dysfunction (LVD)		Cardiologist Result was Positive									
		# Positive	% Positive (Sensitivity)	% False Negative	% Unable to Assess						
Any LVD	HCU	117	70.1 .0001	27.4 .001	2.6 .001						
	PE	122	34.4	49.2	16.4						
Moderate or	HCU	71	62.0 .0001	36.6 .001	1.4 .001						
Severe LVD	PE	73	12.3	68.5	19.2						

		(Cardiologist Result was Negative									
		# Negative	% Negative (Specificity)	% False Positive	% Unable to Assess							
Any LVD	HCU	219	73.1 .05	24.7	2.3 .0001							
	PE	232	62.9	20.3	16.8							
Moderate or	HCU	265	86.4 .05	10.9	2.6 .0001							
Severe LVD	PE	281	78.3	5.7 .05	16.0							

- HCU also significantly improved detection of cardiomegaly and pericardial effusion
- Did not improve valvular assessments

Results: Exit Survey

- Hospitalists expect to perform cardiac HCU on 44% of patients admitted to general medicine ward
- 90% say HCU adds important information to clinical evaluation at least half of the time
- 70% would give up the stethoscope for the HCU device

Conclusions

- HCU increases accuracy of hospitalists' PE to detect left ventricular dysfunction, cardiomegaly, and pericardial effusions
- Compared to PE alone, adding HCU increases detection of left ventricular dysfunction by up to 500%
- But HCU still misses 30% of left ventricular dysfunction (versus 65% missed by PE)

Conclusions

- HCU fails to improve accuracy of assessments of aortic stenosis, aortic regurgitation, and mitral regurgitation
- High rate of false positives for valvulvar regurgitation
 - Limited Doppler capability of device
 - Difficulty in obtaining relevant 2-D views

Study Limitations

- Assessed only one level of HCU training
- Did not address questions of clinical benefit and cost
- Did not measure impact on patient and physician satisfaction or on doctor-patient relationship

Summary

- HCU adds to the accuracy of hospitalists' cardiac PE in some areas but not others
- Because of relatively high error rates, hospitalistperformed HCU should not replace conventional echo
- Might best be used by hospitalists as a bedside adjunct to H&P, with follow-up testing or expert interpretation as appropriate

Implications

- Future studies of training hospitalists to perform
 HCU should focus on limited indications
 - Left ventricular dysfunction
 - Prevalent, and increases with age, often asymptomatic
 - Early diagnosis and treatment improves its associated morbidity and mortality
 - IVC assessment
 - Independent predictor of readmission for heart failure⁸

References

- 1) Mangione S, Nieman LZ. Cardiac auscultatory skills of internal medicine and family practice trainees. A comparison of diagnostic proficiency. *JAMA* 1997;278:717-22.
- 2) Kobal SL, Trento L, Baharami S et al. Comparison of effectiveness of hand-carried ultrasound to bedside cardiovascular physical examination. *Am J Cardiol* 2005;96:1002-06.
- 3) DeCara JM, Lang RM, Spencer KT. The hand-carried echocardiographic device as an aid to the physical examination. *Echocardiography* 2003;20:477-85.
- 4) Kimura BJ, Amundson SA, Willis CL et al. Usefulness of a hand-held ultrasound device for bedside examination of left ventricular function. *Am J Cardiol* 2002;90:1038-9.
- Brennan JM, Blair JE, Goonewardena S et al. A comparison by medicine residents of physical examination versus hand-carried ultrasound for estimation of right atrial pressure. *Am J Cardiol* 2007;99:1614-16.
- Spencer KT, Anderson AS, Bhargava A et al. Physician-performed point-of-care echocardiography using a laptop platform compared with physical examination in the cardiovascular patient. *J Am Coll Cardiol* 2001;37:2013-8.
- 7) Martin LD, Howell EE, Ziegelstein RC, Martire C, Shapiro EP, Hellmann DB. Hospitalist performance of hand-carried ultrasound after focused training. *Am J Med* 2007;120:1000-04.
- 8) Goonewardena SN, Gemignani A, Ronan A, et al. Comparison of hand-carried ultrasound assessment of the inferior vena cava and N-terminal pro-brain natriuretic peptide for predicting readmission after hospitalization for acute decompensated heart failure. J Am Coll Cardiol Img 2008;1:595-601.

Cardiomegaly

Cases		%	P LCL	UCL	N	%	Р	LCL	UCL	N
		E	Exact Match				Clo	se Ma	atch	
All	HCU	90 .00	<mark>05</mark> 86	93	311	90	.005	86	93	311
	PE	59	53	64	311	59	•	53	64	311
Normal	HCU PE	93 .00 59	001 90 54	96 65	271 271	93 59	3 .000°	1 90 54	96 65	271 271
Abnormal	HCU PE	70 53	56 37	84 68	40 40	70 53		56 37	84 68	40 40

Pericardial Effusion

Cases		%	Р	LCL	UCL	N	_	%	Р	LCL	UCL	N	
			Exact Match				Close Match						
All	HCU	79	.0001	75	84	336		96	.0001	93	98	336	
	PE	49		44	54	336		59		54	64	336	
Normal	HCU PE		.0001	80 55	89 66	269 269			.0001	92 56	97 68	269 269	
	PE	61		55	00	209		62		30	00	209	
Abnormal	HCU	60	.0001	48	71	67		99	.0001	96	100	67	
	PE	3		0	7	67		48		36	60	67	

Aortic Stenosis

Cases		% P	LCL	UCL	N	%	Р	LCL	UCL	N			
		Ex	Exact Match				Close Match						
All	HCU PE	73 74	68 69	77 79	336 336	83 90		79 87	87 93	336 336			
Normal	HCU PE	79 84	75 79	84 88	286 286	85 94	.005	81 91	89 97	286 286			
Abnormal	HCU PE	34 20	21 9	47 31	50 50	70 68		57 55	83 81	50 50			

Aortic Regurgitation

Cases		% P	LCL UCI	_ N	%	Р	LCL	UCL	N				
		Exa	Exact Match				Close Match						
All	HCU	52	46 57	290	74		69	79	290				
	PE	63	58 69	290	83		79	88	290				
Normal	HCU	59	52 65	206	73		67	79	206				
	PE	86 .0001	82 91	206	89	.0001	85	94	206				
Abnormal	HCU	35 .0001	24 45	84	76		67	85	84				
	PE	7	2 13	84	69		59	79	84				

Mitral Regurgitation

Cases		% P	LCL	UCL	N	%	Р	LCL	UCL	N
		Ex	act Ma	atch			Clo	se M	atch	7
All	HCU PE	42 40	36 34	48 46	290 290	77 77			82 82	290 290
Normal	HCU PE	54 79 .000			114 114	80 89	.05	72 83	87 94	114 114
Abnormal	HCU PE	35 .000	01 28 10	42 20	176 176	76 70		69 63	82 77	176 176